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Abstract

Several problems of applied probability lead to the
investigation of extremes of a sequence of random variables
(floods, strength of materials, failure models, maximal cueue
length, air polluvtion data, etc.). It is unrealistic in most
cases to ascume that the random veriablec in question are
independent and identically distributed. However, there are
several dependent models when the distribution of the k=th
larpgest is well approximated by the distribution of the k=th
largest of independent, and some times independent and iden-
tically distributed random variables (possibly changing the
fixed size of the sequence in question to a random one). See
the book below, particulerly Sections 3.1, 3.12, 6.1 and 6.2,
in which both the possibility of such approximations and the
limit laws when such approximation fails are discussed.

We shall describe several models with emphesis on the
possibility of approximations by independent random variables.
In sddition, we shall analyze the following embarrassing ques-
tion of an applied scientist: in a cample of size n = 1,000 ,
say, is the 10-th largest an extreme in the sense that k=10
is fixed as n increases (if n = 1,000 is not large enough,
teke n = 106), or should one consider the 10~th largest as
the 3[3-— th largest ? Since the limiting distributions are
different in the two cases, the decision on the actual case to
be applied is significant.

Through this analysis, we shall point out several important
"rules" for avplying asymptotiec extreme value theory.
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l. Stochastic Model Building

l.1. General comments. One of the most crucial part of an

arplied scientist's decision is the adoptation of a stochastic
model for the random aquantities XJ,XQ,..., Xn he is to deal
with. Whether thece random quantities are produced by nature

. (floode, winds, etc.), or by a manufacturing procedure (life

leng*hs of comnonents of an equipment), or the statistician
collects them by random sampling, it is very rare that a sci-
entific reasoning would lesd to a unique dependence structure
and a well defined family of distributions for the X's. Con-
csequently, the basic underlying dependence and distributional
assumptions are subjective to a large extent. The question

_thus arises whether substantially different conclusions can

be reached by two scientisto, assuming that both of them work
under “reaconable assumptions"? Here “reasonable® means that
the ascumptions are compatible with gencral practice in the
scientific litersature.

For an outsider, the fact alone that this question arises
should be shocking who trusted us that scientific decicsions
ought to be unquestionable. Unfortunately, not just the ques-
tion arises but the answer to it is the real disaprointment:
the subjectivity of model building does influence the other-
wise uniacuely determined scientific procedure of decision
making. Therefore, the choice of the model has to be based on
more careful studies than a routine accentance of independence
end 8 family of distributions (normality or other popular ones).
One cannot expect to build a theory of model building with a
general appeal, since the practical problem to be settled should
be 2 major consideration in adopting a model. Evidently, one
has to be more sccurate when human life is involved such as
effects of food additives, drugs and medical treatment or
safety of equipments. Financial and legal considerations also
increase the demand for more accurste models. Bul whether newer
approsches are more accurate is very doubtful. The almost daily
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rejection of food additives on the base of moving away from
the classical assumption of normality to a new underlying
distribution does not correct the error of the model by which
these seme sdditives were accepted earlier as safe. Neither
did the model used for the evaluation of air pollution data
become more sccurate by changing the assumption concerning

the distribution of pollutant concentration first from normal
to lognormal and more recently to other families, mainly mixtures.
One general rule can, however, be set up: decisions of major
importance should be reached after the data has been evaluated
in several alternate models.

Examples in subsecuent sections will suprort all claims
of this introduction.

1.2. Stochastic models with extremes. In the book, Galambos (1978),
the present author described and developed several dependent

models, when the extremes govern the laws of interest. The aim
of the precent paper is to summarize some of these available
models and to point to an important direction of future de-
velopmente.

Let us start with a 1i§t of aprlied fields where the solu-
tion is in terms of the maximum Zn or minimum Wn of the
basic random quantities Xj’ 1< J<n, associated with the actual
practical problem.

The  annual flood on a river is measured as the maximum
Zn of the daily highest water levels Xj’ j21. The X's here
are dependent and closer the observations are in time, the stronger

the dependence is. Within & season, and at come locations through-
out the year, the X's can be ascumed to be identicnlly distributed.
In order to plan for building a dam on a river at a given location,
an accurate description of Zn is required. If two, or if several
dams sre to be built on the same river, then the X's have to be
measured at those selected locations and our interest is the
multivariate distribution of the corresnonding 24's.

Notice that a choice of a mathematical model for the de-
gscription of the annual flood is equivalent to accepting a concept
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for a weakening dependence as time nasses and a choice for the
common distribution of the X's in a season or for the year as
the case may be. Because other avplied fields lead to this same
mathematical problem, let us go ahead with the 1list mentioned
earlier.

The rendom strength of a sheet of certain material under

o

stress can be expressed as a minimum Wn as follows. Let us

hypothetically subdivide the sheet into n poerts. If Xj is

the strength of the j-th part in this subdivision, then the

so called weaskest link principle tells us that the strength of
the original sheet is indeed Wn of thece Xj. Again, those

Xj which rerrecent the strength of distant parts have weaker
dependence than neighbouring ones and in fact some kind of almost
independence is valid as distance increases indefinitely. Here,
unit is proportional to the reciprocal of the sauere root of n
(make the hypothetical subdivision of a rectangle in such a way that
both edges are divided into m equal parts and set n = m2).

If the division is done into eaual parts, then the X's can

again be ‘assumed to be identically distributed.

The time to the first failure of a complicated eaquipment is

best approached by first grouping components into so called cuts
or pathes. By such an approach, an arbitrary equipment becomes
equivalent to a parallel or series system. However, while varallel
systems are installed for safety considerations and thus they are
expected to function independently, the above reduction procedure
can lead to very complicated dependence structures. The actual
grouping procedure is as follows., A path is a set of components
whose functioning insures the functioning of the equipment. A
minimal path is a path whose number of elements cennot be reduced
without vielsting the defining property of a path. On the other
hand, a cut is a set of components whose failure cauces the equip-
ment to fail.Finally, a minimal cut ic a cut with a minimal number
of elements. Now if Xj represents the random time to the first
failure of the j-th minimal path of the equipment, then Zn is




the time to the first feilure of the equipment. This same
random waiting time until the equipment fails can also be
expressed as the minimum WB of the random times upto the
"failures of minimel cuts. Since either n or s is large
for a complicated equipment, its failure is well described
by an asymptotic model. However, since different path sets
may contain several common components, the assumption of
independence of the Xj is unjustified even in an approxi-
mate sense. Evidently, a similar remark applies to cuts as
well.

Here we cannot speak of close and distant neighbours
of path sets and yet the dependence structures of the three
problems listed can be described by a unified model. Vihat
will be essentially different in the failure model when
compared with the models for strength or flood that a single
distribution cannot be used for all path sets. We should
rather seek a mathematical solution when each path set is
permitted to have different failure distribution. Strangely
indeed, this generality leads to the mathematical conclusion
that enginecrs apvlied all along: any distribution with mo
notonic hazard rate is an asymptotic failure distribution.

_ The unified dependence model for the three listed problems
is given by a set of rondom variables Xl, X2""' Xn which
form 2 so called E;—sequence. Since it is accurntely defined
on Pp.176=177 of the author's book referred to earlier, we
describe it here in vague terms only. The recuirement is that
a set E; of exceptional psairs (Xi’xj) can be found with
which the following three basic properties hold for the original
seauence Xj, l1€£j<ns

(i) the events f XJ ;J(} are asymptotically independent
t

as X becomes "large", whenever no pairs of the
subscripts jt are exceptional;
(ii) if exactly one pair, (im,it) say, is exceptional

among the subscripts of Xi y 1L€8<k, then the
9
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probability of the intersection of the events {X. » x {

is proportional to the precduct of P(X; > %, X,
m t

and the univariate tails P(X; > x), s # m,t;

1o

zx)

and
(iii) the number of elements in the exceptional set E;

ig of smaller magnitude than n2, which is the number
of all pairs of the subscripts of the Xj .

Under these conditions, the univariate and bivariate marginals
of the Xj determine whether the maxima, when normnlized, have
a limiting distribution and when their do, what is the actual
form of this limiting distribution. There is a simple criterion

available, and which is of wide applieability to epplied questions

which guarantecs that the limiting distribution ot the normalized
maximum for an E;—sequence exigts and this limiting distribution
is the same ag if the Xj were completely independent. However,
when this condition fails, the limiting distribution may still
exist, but the corresponding theory is not well developed for
such case.

This unified approach through E;-sequences covers several
well developed dependence coneeptis such as m—-dependence and
variants of mixing. As was emphasized earlier, the basic assump-
tions of a model are mainly a matter of belief when applied in
a concrete situation; the concept of an E;—sequence is developed
exactly with this dilemma in mind. While the special case of a
mixing concept, say, requires the validity of a weakening de-
pendence for certain sequcnces of sigma fields as the major
assumption, our only assumption that cennot be checked is (ii).
Nemely, one can construct the set E; in such a way that (i)
and (iii) be automnticelly satisfied. This construction of E;
for the three problems mentioned is self evident. For the flood
end strength models, E; will contain any pairs which represent
“close neighbours", while, for the failure model, (i,j) belongs
to EX

n
which have common elements.

if Xi and X;j represent life length of such peth sets
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Another approach to fsilure models is possible through
exchangeable variables. It is quite a surprising result that
a kind of averaging is possible in such a sensitive field ss
extreme vealue theory (see Sections 3.1 and 3.2 of the book
by Galambos (1978)). We do not discuse this approach here,
but we wish to draw attention to it because of its varied
poeeibility for further investigations.

We conclude this secétion by mentioning two approaches
to specific problems of extreme value theory which bear in-
teresting mathematicel facts. One is the approech by C.C. Heyde
(1971) to queue length, where dependent varisbles arec "transformed'
to independent ones (but with a random number of elements). The
other one is the classical aprroach by H.E. Daniels (1945) to
strength of bundles of threads, in which the opposite is done:
originaslly independent variables are "transformed"to dependent
ones., Interestingly, these dependent variables cen also be re-
presented as a function of indevendent random varisbles of random
size, namely, a quantile with random index. However, no attempt
has been mede so far to develop the theory of strength of bundles
on this latter line.

Further importent applications are touched upon in the next
section where we discuss the effects of the choice of a popule=-
tion distribution.

2. The choice of a population distribution

We speak of a population distribution when a random phenomenon
cen be described by a sequence of identically distributed random
variables Xl’ X2,..., Xn. This ie the case of floods, strengths
(both sheets and bundles), certain failure models (e.g. parallel
and series systems), permitted level of air pollution concentration
(the US Stendard is set by the second largest observation) and
effects of food additives or drugs on persons belonging to a group
of identical physical conditions. Notice that independence is
not emphasized. However, in the anslysis that follows it will be

e - k":w




on occasion easier to stresc a point by assuming that an
approximation by independent variables is posnible.

Let ue put down some notations. The basic random variables
are denoted by Xl, XZ""’ Xn . They are assumed to be iden-
tically distributed and we uce F(x) for their common distribu-
tion function. We put Zn and Wn for the maximum and the
minimum, respectively, of the X's, whose distribution functions
are Hn(x) and Ln(x), respectively. Finally, the empirical
distribution function of the X't is denoted by Fn(x). In the
frequency approach to probability, Fn(x) hes to be a good approxi-
mation to F(x). But can we rely on any good apprcximation to
F(x) if our interest is Hn(x) ? As we shall see,no clagsical
approximation is acceptable and thus specific techniques are
‘needed in extreme value theory. Of course, if we know F(x)
accurately through a so called characterization theorem (for
questions of normality, see the book by Kegan, Linnik and Rao
(1973) and for other distributions, the one by Galzmbos and
Kotz (1978)), then no statistical method is needed.

First let us look at the meaning of the empirical distribu-
tion function. By definition, Fn(x) =1 for all x>Z, . The
meaning of this fact is that the jump of Fn(x) at Z_ represents
the increament 1 - F(x) of the population distribution for an x
close to z_  but the actual variation of the tail 1 - F(x) is
not approximated by Fn(x) for x's exceeding Zn‘ But since
the tail 1 = F(x) alone determines Hn(x) for large values of
n, whenever the basic random variables are almost independent,
we simply cennot expect Fn(x) to be a guide in approximating
Hn(x). Now ve just have to observe that both the chi-squared test
for goodness of fit and the more frequently used fitting by
a specific probability paper are based on Fn(x) and we can thus
conclude that classical methods are inapplicable to approximate
F(x) in extreme value theory. In order to be more specific, let
us look at a numerical example.

Ascsume that a random quantity X is associated with the
operastion of an equipment (or the human body). The equipment fails




if X exceeds 3300 and its operation is safe in the range
2000 to 3200. We made n = 500 observations on X and all were
500 = 3071.
Furthermore, the X's were varying around the mean 2698 with
standard deviation 104, and the reduced values (X-2698)/104
gave a very good fit on a standard normal onrobability paper.

in the safety range. In fact, WSOO = 2342 and &
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Is it now justified to use a normal table to comnute the safety

of 100,000 eouipments, say ? If a failure means only a financial
losa, then not much problem is involved: one computes the expected
number of losces, includes them in the price and gives a warranty
ageinct losc. However, if a simgle failure means disaster (loss

of life or permanent damage to humans), then we have to determine
the population dictribution F accurately enough that the value
100,000(1 - F(y)) with y =(3300-2698)/104=5.788 be negligible.
Since our observatiorns do not give any information on F(y) beyond
y = (3071-2698)/104 = 3.587, a fitting based on these observetions
ies  insufficient for our purposes. VWhat we actually want is a

good aprnroximation to Hq(x) with 8 = 100,000. A separate paper
is devoted to this nroblém: see Galambos (1978a).

H 3. The accuracy of an approximate model

The discuscion in the preceding section already shows that

accuracy is more significant in extreme value theory than in

* most classical statistical problems. Unfortunately, very few

speed of convergence estimates are available. There is actually

| . only one result on this line which first appeared in the author's
book (Section 2.10). That result can also be extended to E;—senucnce:
without much effort. We do not reproduce those results here. Kather
we would describe another problem that also leads to a problem of

| accuracye.

In asymptotic theory one distinpuishes between unrer extremes

and large order statistice depending whether the rank of an order

Y statistic is fixed or varies with the sample size. More precicely,
let Xk:n be the k=th largest among n obeservations. If k is
B fixed as n idincreases indefinitely, then Xk:n is called the
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k=th upper extreme. On the other hand, if k vasries with n

but k/n converges to one as n goes to infinity, then we

refer to Xk:n as a lerge order statistic. Now, in severnl

applied fields one faces the problem of evaluating the behsviour

of Xk:n where k is small and n is larre. Which case applies
if asymptotic theory is to be the basic tool ? For example, if

k =10 and n = 1,000, is Xk:n an uprer extreme or a large

order statistic in the above sense 7 The distinction is significant
because in the case of extreme, a gamma type distribution is
obtained for the limiting case while with varying k (in our case
37?), the limiting distribution is related to the normal distribu-
tion. Since the parameters are small here, a normal approximation
is not justified for the gamma. The answer is not an easy one and

a general answer cannot be given. When one decides to use one case
or the other, the accuracy of the apnroximation has to be estimated.
This c2n only be done if the population distribution is known.

If not, then a method similar to the one described for the maximum
in Galambos (1978a) should be developed. No result seems to be
available on this line.
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